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Optimizing land use allocation is a challenging task, as it involves multiple stakehold-
ers with conflicting objectives. In addition, the solution space of the optimization grows
exponentially as the size of the region and the resolution increase. This article presents a
new ant colony optimization algorithm by incorporating multiple types of ants for solv-
ing complex multiple land use allocation problems. A spatial exchange mechanism is
used to deal with competition between different types of land use allocation. This mul-
ti-type ant colony optimization optimal multiple land allocation (MACO-MLA) model
was successfully applied to a case study in Panyu, Guangdong, China, a large region
with an area of 1,454,285 cells. The proposed model took only about 25 minutes to find
near-optimal solution in terms of overall suitability, compactness, and cost. Comparison
indicates that MACO-MLA can yield better performances than the simulated anneal-
ing (SA) and the genetic algorithm (GA) methods. It is found that MACO-MLA has
an improvement of the total utility value over SA and GA methods by 4.5% and 1.3%,
respectively. The computation time of this proposed model amounts to only 2.6% and
12.3%, respectively, of that of the SA and GA methods. The experiments have demon-
strated that the proposed model was an efficient and effective optimization technique
for generating optimal land use patterns.

Keywords: multi-type ant colony optimization; land use allocation; optimization

1. Introduction

In economically fast growing regions, planners and decision makers would frequently face
a situation where multiple stakeholders pursue incompatible uses and target the same land
parcel (Bojórquez-Tapia et al. 1994, Li and Liu 2008). Land use allocation is the process in
planning that manipulates proportions and locations of different land uses within a defined
area, during which the planners try to reconcile conflicting interests or, in other words,
achieve an optimal allocation (Carsjens and Van der Knaap 2002). This optimization is
particularly challenging for a number of reasons. First, it deals with multiple objectives
at different levels. Specifically, at the individual land use level, each use seeks its most
suitable location to be geometrically compact; and at the regional level, the objectives may
include overall high suitability and low conversion cost. Second, the optimization must take
into account both attribute (e.g., physical limitation, socioeconomic and cultural factors,
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2 X. Liu et al.

and environmental impact) and spatial/geometrical (e.g., distance, shape, contiguity, and
compactness) characteristics (Cova and Church 2000). Third, the optimal solution of land
use allocation often lies within innumerable combinations of attributes of land unit and
alternatives of land use (Diamond and Wright 1989, Aerts 2002), and the complexity of
solution search increases in an exponential manner as the region gets large or the spatial
resolution of data gets finer (Stewart et al. 2004).

A number of algorithms have been developed to achieve optimal land use alloca-
tion through computation (WrightCharles and Cohon 1983, Williams and Revelle 1998,
Stewart et al. 2004). The most commonly used techniques are mathematical program-
ming methods, including linear programming (LP) and mixed-integer programming. LP
is powerful in solving high-dimensional problems (Campbell et al. 1992), but is limited
by assuming linearity for the objective function (Matthews 2001). Mixed-integer program-
ming, as an extension of LP, allows the use of discrete variables and does not need the
linearity assumption (Crohn and Thomas 1998). The mathematical programming meth-
ods are often computationally intensive, which is a major problem when applying them to
land use allocation. To overcome the limitation set by computational capacity, one often
resorts to heuristic algorithms (Xiao et al. 2007), such as genetic algorithm (GA), simu-
lated annealing (SA), and artificial neural network. A heuristic approach allows trade-off
between the quality of solution and the burden of computation, and hence is often used
to find near-optimal solutions (Laarhoven and Aarts 1987). For instance, Eastman et al.
(1995) developed an intuitive solution to the problem of land allocation under the condi-
tions of conflicting objectives within the context of a raster geographic information system
(GIS). The limitation of this method is the lack of compactness constraint. A fragmented
pattern will be produced without incorporating compactness constraints in land use plan-
ning. Gimblett et al. (1994) proposed a neural network technique to accommodate a large
number of different combinations of interdependent land suitability factors. The limitation
with neural networks is that their internal processes are hidden from the planners and tend
to have problems of over-fitting (Liu et al. 2008a). Recently, the GA method became pop-
ular in land use suitability analysis (Krzanowski and Raper 2001). Dibble and Densham
(1993) designed a GA process for generating alternative solutions for location problems in
spatial decision support systems. Brookes (1997) developed a site allocation method based
on region growing, which was further developed by incorporating GA (Brookes 2001).
Feng and Lin (1999) proposed a GA-based model that can be used to generate Pareto
optimal alternative solutions for land use planning. Xiao et al. (2002) also used GA to gen-
erate alternatives for multi-objective site search problems. Despite the seemingly popular
method of GA in solving spatial allocation problems, a major problem of GA is that one
never knows whether the global optimum has been identified with a sufficient precision
(Malczewski 2004). A more severe problem with GA is that this method was found to be
not efficient when the study area is large with finer resolution (Stewart et al. 2004).

Another heuristic method that has been applied to optimal land allocation is SA (Aerts
2002). Martínez-Falero et al. (1998) used this method to allocate 10 agricultural activities,
during which they took into account 6 sub-objectives. Aerts and Heuvelink (2002) used
SA to generate land use allocation alternatives, and a highlight of their model is that it can
both minimize development costs and maximize spatial compactness of the land use. Santé-
Riveira et al. (2008) developed a planning support system for rural land use allocation by
integrating the SA method and GIS. Although SA can produce good optimization results,
the computational time of SA is much longer than that of GA (Li and Yeh 2005).

Most of these optimization techniques are used to select optimal sites for a single land
use (Carver 1991, Church et al. 2003, Li et al. 2009). Only a few techniques have been
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International Journal of Geographical Information Science 3

proposed to deal with multiple land use allocation problems (Santé-Riveira et al. 2008).
For example, Stewart et al. (2004) designed a multiple land use allocation model by using
the GA method. Santé-Riveira et al. (2008) developed SA to allocate multiple land use
in rural areas based on land suitability values and spatial compactness. Land allocation
optimization becomes more complicated when multiple land uses are involved, as differ-
ent land uses may compete for the same site. Another issue for land use optimization is
that conventional heuristic approaches are inefficient in finding good solutions to land use
allocation, especially in large areas. Most of the previous studies mainly focus on optimiz-
ing land use patterns for a small region. For example, Stewart et al. (2004) developed GA
to optimize land use planning alternatives, but the experiments were only implemented in
20 × 20 and 40 × 40 grids. The sketch layout model was proposed by Feng and Lin (1999)
to generate alternative land use patterns, the study region having an area of only 40 cells.
Santé-Riveira et al. (2008) applied the SA method to allocate land units with given areas
among the 182,168 cells. However, this method took almost about 5 hours to obtain a land
use allocation solution. It is a challenge to solve land use optimization problems with the
increase in the size of the study area. Thus, exploration of efficient and effective optimiza-
tion methods for multiple land use allocation in large areas is academically interesting and
may result in useful practical applications as well.

The present study examines the use of ant intelligence for solving multiple land use
allocation problems in a large area. Ant colony optimization (ACO) is a computational
method inspired by natural biological systems. First proposed by Dorigo (1992), ACO uses
a set of cooperating artificial ants with simple intelligence as instruments to incorporate
distributed computing, local heuristics, and knowledge from past experience for searching
optimal solutions (Eberhart et al. 2001). Through the indirect communication among ants
by laying pheromone, ACO has a positive feedback mechanism that facilitates the rapid
discovery of optimal solutions (Dorigo 1992). Complex tasks, such as finding optimized
route to foods, can be effectively accomplished through the cooperation between individual
ants, and the integrity of the overall system will not be easily affected by the failure of one
or several agents (Dorigo et al. 1996).

ACO has been used in the traveling salesman problem, data clustering, combinatorial
optimization, and network routing problems (Lumber and Faieta 1994, Kwang and Weng
2002). Studies indicate that ACO can be superior to other nature-inspired algorithms, for
example, SA and evolutionary computation, in solving complex combinatorial optimiza-
tion problems (Dorigo and Gambardella 1997). Recently, ACO also found its applications
in geographical problems, including urban simulation (Liu et al. 2008b), remote sensing
classification (Liu et al. 2008c), and site selection (Li et al. 2009). These studies have
demonstrated that ACO is a potentially useful algorithm to tackle complex spatial optimiza-
tion problems. Multiple land use allocation is a complex optimization problem involving
conflicting objectives. ACO should be a useful optimization technique for solving this
spatial decision problem. Previous studies have demonstrated that ACO is an efficient
algorithm in solving multi-objective problems, and hence we have considered it to have
potential in tackling land use allocation problems.

However, we then realized that the conventional ACO, which only implements one
type of ants, is not sufficient for dealing with a problem like land use allocation. In this
study, we extend the single-type ACO to multi-type ACO (MACO) for solving the multiple
land use allocation problems in a large area. The modifications include the use of multiple
types of ants equipped with a spatial exchange strategy. Different types of ants are used
to represent the competition mechanism in the formulation of optimal land use allocation.
Moreover, a spatial exchange strategy is designed to deal with competition between various
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4 X. Liu et al.

types of land use. The objective is to generate a land allocation pattern that minimizes the
converting costs and meanwhile maximizes the land use suitability and compactness. As a
case study, we applied this MACO model to the creation of land allocation alternatives in
Panyu, a rapidly developing region in Pearl River Delta, China. The model validation was
further carried out by comparing the MACO method with the two conventional methods,
the SA and the GA.

2. Ant intelligence for solving land resource allocation problems

2.1. Concepts of ACO

With ACO, the optimization is carried out by simulating the natural behavior of ant colonies
in their search for food, including mechanisms of cooperation and adaptation (Dorigo
1992). When searching for food, the initial path taken by individual ants starting from
the nest is essentially random. Once the ants find a food source, they evaluate the distance
and the quality of it and deposit pheromone on the ground in order to mark a favorable
path that should be followed by other members of the colony. The deposited pheromone
trail will evaporate as time passes. Later when an ant goes out to search for food, it will
most likely follow an existing pheromone trail, and the ant’s own pheromone will rein-
force the existing trail (Bell and McMullen 2004). The amount of deposited pheromone
will increase when the number of ants increases in selecting a certain path. If the path is
shorter, the ants will move along the path, and more ants are attracted to follow the trail.
As a result, more amount of pheromone is deposited on this path. At the final stage, all the
ants will be attracted to the shortest path. In this way, ants are capable of finding the short-
est path from their nests to food sources by exploiting pheromone information and without
using visual information. This process can be described as a loop of positive feedback, in
which the probability that an ant chooses a path is proportional to the number of ants that
have already passed that path (Dorigo 1992).

2.2. Land allocation model formulation

The land source allocation problem can be defined as (Aerts 2002)

M = (S, �, f ) (1)

where S denotes the set of candidate solutions, � is the set of constraints, and f is an
objective function. This problem can be formulated as a maximization problem, which is
to find a solution iopt that satisfies (Aerts and Heuvelink 2002)

f (iopt) ≥ f (i) ∀i ∈ S (2)

If we represent the study area as a two-dimensional grid with R rows and C columns, then
technically the problem is how to allocate K different land uses to the cells in the grid or,
in other words, how to assign a specific land use to each individual cell (i, j), so that the
resulting land use map optimally achieves the decision maker’s objectives. For algorithmic
purposes, it is useful to define a binary decision variable xijk, with 1 indicating that land
use k is to be allocated to cell (i, j), and 0 otherwise.

Three objectives of land use allocation have been proposed (Siitonen et al. 2003,
Stewart et al. 2004). The first is to maximize land suitability, that is, it is considered optimal
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International Journal of Geographical Information Science 5

that each land use is allocated to the most suitable land. When there is competition for the
same piece of land from different land uses, the objective becomes to maximize the total
suitability of the land use map (Yeh and Li 1998). The second objective is to maximize
the spatial compactness of a land use, that is, a compact shape is more desired than a frag-
mental shape. This is because a compact shape requires less infrastructure and services,
and thus can improve the efficiency in land and energy utilizations (Gabriel et al. 2006).
The third objective is to minimize the total cost of converting the current land use into a
new land use. The costs of various land use conversions are different. For example, con-
verting urban land into grassland is expensive, while the cost of converting agricultural use
to urban use is relatively small. The three objectives can be expressed as follows (Stewart
et al. 2004, Sante´-Riveira et al. 2008):

Max
K∑

k=1

R∑
i=1

C∑
j=1

Suitijkxijk (3)

Max
K∑

k=1

Compk (4)

Compk = LkMaxSum − LkSum

LkMaxSum − LkMinSum
(5)

Min
R∑

i=1

C∑
j=1

Convumxijum (6)

K∑
k=1

xijk = 1 ∀i = 1, . . . , R, j = 1, . . . , C, xijk ∈ {0, 1} (7)

R∑
i=1

C∑
j=1

xijk = Qk ∀k = 1, . . . , K (8)

where Suitijk is the suitability of cell (i, j) for the kth land use, Compk is the compactness
of the kth land use in the resulting land use map, and LkSum is the sum of perimeter of the
kth land use. Once the area is known, the most compact form would be circular and the
minimum sum of perimeter of the kth land use (LkMinSum) can then be calculated. On the
contrary, if the selected sites separate from each other, the maximum sum of perimeter of
the kth land use (LkMaxSum) can then be obtained. Convum is the cost of converting land use
from u to m; and x is the binary decision variable discussed earlier: xijum = 1 indicates that
the current land use u at location (i, j) is converted to m (u �= m), and xijum = 0 otherwise;
and Qk is a prespecified percentage of land use k in the entire area. Equation (7) ensures
that only one land use can be allocated to each cell. Equation (8) specifies percentages
of different land use types for the allocation to meet. Since the three objectives may con-
flict with one another, we employed a weighting method to deal with the multi-objective
situation:

U =
K∑

k=1

(a · Suitk + b · Compk − c · Convk) ∀a + b + c = 1 (9)
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6 X. Liu et al.

where U is a composite score incorporating all three objectives; a, b, and c are the weights
for suitability, compactness, and converting cost, respectively.

2.3. MACO for multiple land use allocation (MACO-MLA)

While ACO has been successfully applied to spatial optimization problems, such as site
selection and route planning (Li et al. 2009), conventional ACO, which implements only
one type of ants, would not be able to handle the land use allocation problem, which
involves multiple land use types. One way for ACO to accommodate such a problem is
to expand and include multiple types of ants and use a mechanism to represent their com-
petition and interaction so as to achieve optimization. For that purpose, we developed a
spatial exchange mechanism. The details of the procedure are described in the following
sections.

2.3.1. Solution construction

Conventional ACO has only one type of artificial ants. In our MACO, to address the situ-
ation of multiple land uses, the types of ants correspond to the types of land uses, and the
total number of ants is the same as the number of cells that represent the study region, so
that each such cell is occupied by only one ant. The number of ants of a certain type is
determined by the proportion of that specific land use in the study region.

In the beginning, the ants are randomly positioned in the region. At the end of the opti-
mization, the final locations of the ants form an optimal solution to the land use allocation
problem. As illustrated in Figure 1, the basic process in the optimization is the exchange
of ants between two cells. The basic task of an ant in the optimization is to find out if there
is a better cell for it to occupy. Whether a candidate cell is better for a searching ant or not
is evaluated with an objective function. This function determines if two ants will exchange
cells they currently occupy or the searching ant will keep testing other cells.

2.3.2. Improved selection strategy

Site selection is an important step for ants in optimizing multiple land use spatial patterns.
The probability that a cell (i, j) will be selected by the qth ant with land use k at time t is
defined as follows:

pq
ijk(t) =

⎧⎨
⎩

[τijk (t)]α ·[ηijk (t)]β

∑
x∈allowedq

[τx(t)]α ·[ηx(t)]β
, if (i,j) ∈ allowedq

0, otherwise
(10)

In the above equation, pq
ijk(t) is the probability of cell (i, j) to be occupied by the qth ant in

iteration t, that is, the probability of the cell exchange to occur. This probability is deter-
mined by two factors: ηijk, a heuristic value that guides the k-type ant in selecting cells to
test, and τ ijk, the pheromone intensity of k-type ant, on which the ACO’s positive feedback
mechanism is based. The constants α and β are specified by the user and determine the
relative importance of the pheromone density versus the heuristic information. The tabu
list (allowedq) is to mask out the selected cells that should not be visited again by other
ants with the same type.

In a naïve process, a searching ant randomly picks a cell to evaluate, which is not
efficient. The heuristic value in Equation (10), ηijk, is for improving the efficiency of the
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International Journal of Geographical Information Science 7

Figure 1. The procedure for optimizing land use spatial patterns using the MACO-MLA model.

selection by giving privilege to certain cells. In this study, we simply used the land use
suitability to determine that privilege, and thus define

ηijk = Suitijk∑
x

Suitxk
(11)

where ηijk is the heuristic value of the k-type ants, Suitijk is the suitability of land use k at
cell (i, j), and

∑
x Suitxk is the sum of the suitability of land use k for all cells in the study

area.
The pheromone intensity in Equation (10), τ ijk, is the unique factor of ACO with which

the optimization is achieved. In this study, the pheromone intensity at each cell is initialized
to the same value as

τijk(t = 0) = 1

G
(12)
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8 X. Liu et al.

where G is the total number of cells in the study region. The pheromone intensity of each
type of land use at each cell will be updated at the end of each iteration according to the
following mechanism: The pheromone intensity of type k will increase if the cell is occu-
pied by a k-type ant; and the pheromone intensity will decrease if the cell is not occupied
by a k-type ant (i.e., evaporation). Precisely, the updating process is as follows (Li et al.
2009):

τijk(t + 1) = τijk(t)(1 − ρ) + �τijk(t) (13)

�τijk(t) = r · U (14)

where ρ is a coefficient specifying the evaporation rate; �τ ijk(t) is the k-type pheromone
remaining at cell (i, j), which is determined by the objective function U . Objective function
is a composite score incorporating land suitability, compactness, and land use conver-
sion cost; and r is a constant. During the optimization process, more k-type pheromone
deposited on the cells can attract more k-type ants to occupy these sites. At the final
stage, the optimal land use allocation is identified by these artificial ants according to the
pheromone updation.

The traditional ACO depends heavily on cooperation between the ants. In MACO
algorithm, the collaborative behavior between identical types of ants is the same as the
traditional ACO. However, the different ant types are in direct competition with each other.
The modified ACO is equipped with a spatial exchange strategy to solve competition
between different types of ants. When an ant selects a site according to Equation (10),
this ant may have a probability to give up (exchange) its former location to another type
of ant that has already selected a site if there is a significant improvement of the objec-
tive function. The spatial exchange strategy is designed as follows: The value of the
objective function for the current configuration, Uc, is compared with the value of the
objective function for the former configuration, U f. If Uc is larger than U f, the selected
site is then adopted for exchange. Otherwise, the ant continues to select sites according to
Equation (10). The solution was constructed after all ants have located their sites according
to the roulette wheel selection principle and exchange strategy. The validity of the solution
can be assessed by using the objective function (Equation (9)).

3. Model implementation and results

We chose Panyu city in China to test the proposed model. The city, with an area of 786 km2,
is situated at the center of the Pearl River Delta in Guangdong Province, one of the fastest
developing regions in China (Figure 2). In the past three decades, the region has lost a large
amount of agricultural land due to rapid urban development and poor land management
(Yeh and Li 1999), which has given rise to a series of land use problems. In this case
study, we applied the MACO-multiple land allocation (MLA) model to identify optimal
allocation for multiple land uses. The ACO algorithm involves some parameters that can
be determined according to previous studies (Dorigo et al. 1996, Li et al. 2009). Table 1
lists the parameters in Equations (10), (13), and (14) for implementing the MACO-MLA
model.

We imposed a grid with 1123 × 1295 cells to the study area, with a ground resolution
of 30 m. The study area has seven land uses: agriculture, industry, commerce, residence,
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International Journal of Geographical Information Science 9

Figure 2. Location of Panyu in the Pearl River Delta.

Table 1. Parameters used in the MACO-MLA model.

A β ρ Q

5 0.75 0.01 0.15

water, forest, and roads (Figure 3). We excluded water, forest, and road from land allo-
cation, as road is usually not convertible and water and forest are important ecological
resources for protection that cannot be converted. The modeling contains three general
steps: (1) mapping and analysis of land use suitability, which generate suitability value of
each considered land use for each cell; (2) projecting land use demands, which generate
proportions of different land uses that are to be met by the allocation; and (3) allocating
land uses to cells, which was based on the suitability maps and the land use demands.

3.1. Land use suitability analysis

Land use suitability analysis determines to what extent a given piece of land is suitable
for a specific use (Steiner et al. 2000). In this study, we chose 14 factors to evaluate the
suitability. The value ranges of these spatial variables are normalized into 0–1 for calcu-
lating the land use suitability map. The suitability value is a weighted linear combination
of the factors. The weights of the factors were determined through the analytic hierarchy
process, which is a theory of measurement through pairwise comparisons and relies on
the experiences of experts to derive priority scales (Saaty 1980). The analytic hierarchy
process can effectively support decision making with regard to complex issues that involve
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10 X. Liu et al.

Figure 3. Land use map input in the case study.

Table 2. Weights of factors for each of the four land uses.

Factors Agriculture Industry Commerce Residence

NDVI* 0.1385 N/A N/A N/A
Slope 0.0965 0.1253 0.1266 0.1124
Elevation 0.1097 0.0867 0.0935 0.0827
Fertility 0.2353 N/A N/A N/A
pH value of soil 0.1598 N/A N/A N/A
Geological disaster potential N/A 0.1427 0.1461 0.1479
Distance to towns 0.0653 0.0675 0.1251 0.1029
Distance to highways 0.0467 0.1669 0.0528 0.0764
Distance to roads 0.0585 0.1553 0.1035 0.0886
Density of green surfaces N/A 0.0286 0.0297 0.0923
Proximity to river 0.0897 0.0254 0.0169 0.0227
Proximity to industry N/A 0.1622 0.0135 0.0119
Proximity to commerce N/A 0.0236 0.1753 0.1054
Proximity to residence N/A 0.0108 0.1170 0.1568
Sum 1 1 1 1

*The Normalized Difference Vegetation Index.

the comparison of decision elements. The factors and their weights for different land uses
are listed in Table 2. We constructed a raster layer for each of the factors so that suitability
values could be calculated for each cell.

3.2. Projecting land use demands

In this study, we projected land use demands, that is, the proportions of different land uses
that the allocation needed to meet, with a two-step procedure: We first used support vec-
tor regression (SVR) to project the regional population growth and GDP growth and then
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Table 3. The allocation demand for the four urban land uses.

Land use Current number of cells (2008) Demand (2030)

Agriculture 381, 117 301, 514
Industry 75, 965 97, 513
Commerce 34, 557 47, 255
Residence 120, 074 165, 436

project the land use demands based on these growths. SVR is a new learning algorithm
for regression that employs structural risk minimization principle instead of empirical risk
minimization (Smola and Schölkopf 2004). The so-called structural risk minimization prin-
ciple means that the model minimizes an upper bound on the generalization error. This
strategy provides a well-defined quantitative measurement for the capacity of a learned
function to capture the true structure of the data distribution and generalize over unknown
test data set. So, SVR can effectively avoid over-fitting and improve generalization perfor-
mance (Hua et al. 2007). SVR has been successfully applied to solve forecasting problems.
In this study, SVR is used for forecasting population growth and GDP growth through the
machine learning software WEKA (Frank et al. 2010). The statistics data required by SVR
were obtained from the governmental statistics yearbooks.

The demand for residential use was estimated based on the finding that popula-
tion growth is strongly correlated with land use changes (Theobald and Hobbs 1998).
Population growth will result in more demand for residential areas, and therefore pop-
ulation projections have often been used to establish how much additional residence is
required (Pettit 2005). In this study, the demand for residential uses was derived based on
the current ratio of population to residential area and the population projection for 2030.

The expansion of industry and the adjustment of economic structure will lead to an
increase in demand for industrial and commercial land (Liu et al. 2007). In this study, the
demands for these two types of land uses were projected based on the ratio of industrial
GDP to industrial areas and the ratio of service sector GDP to commercial areas calculated
from 2008 to 2030. Lastly, the required area of agriculture is estimated according to the
strategic planning of Panyu. Table 3 shows the allocation demand for industry, commerce,
and residence in future.

3.3. Converting cost

The converting cost is defined as the total cost of converting the current land use into the
future land use. For each pair of land use u and m, the cost of changing the land use from
u to m is represented as Convum, which may vary with location because it depends on the
soil type, land use type, and elevation (Janssen et al. 2008). In this article, the converting
cost of each land use is simply estimated based on the local experiences of the experts and
urban planners (Table 4). The converting cost ranges from 0 (easy to be converted) to 1
(difficult to be converted). The average converting cost of all cells can be estimated by the
following equation:

Conv =
R∑

i=1

C∑
j=1

Convumxijum

Q
(15)

where Q is the total number of cells in the study region.
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12 X. Liu et al.

Table 4. The converting cost of each land use.

Future land use Agriculture Industry Commerce Residence Water Forest Road

Agriculture 0.00 1.00 1.00 1.00 1.00 1.00 1.00
Industry 0.30 0.00 0.90 0.85 1.00 1.00 1.00
Commerce 0.35 0.70 0.00 0.50 1.00 1.00 1.00
Residence 0.35 0.65 0.55 0.00 1.00 1.00 1.00
Water 1.00 1.00 1.00 1.00 0.00 1.00 1.00
Forest 1.00 1.00 1.00 1.00 1.00 0.00 1.00
Road 1.00 1.00 1.00 1.00 1.00 1.00 0.00

3.4. Results of land use spatial allocation

We implemented MACO-MLA using Visual C# .NET and ArcEngine of ArcGIS. Visual
C# .NET is for implementing the modified ACO algorithm and ArcEngine is used for
accessing the spatial data and functionality of GIS.

Since the three objectives (suitability, compactness, and converting cost) in the opti-
mization may conflict with one another, we can define the composite optimality score in
different ways by emphasizing different objectives and in turn generate alternative land use
patterns (Equation (9)). Table 5 lists the weights we have applied to the three objectives
for generating different land use patterns. For example, option A is eventually a single-
objective optimization that only tries to maximize land use suitability. The relative weights
of 3:1:0, 1:1:0, and 1:3:0 were given to generate land allocation patterns that maximize
land use suitability and compactness of land masses (options B–D, respectively). The com-
binations are 2:1:1, 1:1:2, 1:2:1, and 1:1:1 for options E–H, respectively. Options I–K are
used to generate land use pattern that both maximizes land use suitability and minimizes
converting costs. The relative weights of 1:0:1, 3:0:1, and 1:0:3 for three sub-objectives are
given in options I–K, respectively.

As an example, the series of images in Figure 4 show the outputs from different
iterations under option H. The first image shows that the artificial ants representing dif-
ferent land uses are randomly located in the study region. As the iterations progress, the
formulated patterns appear to be increasingly compact. A close inspection found that
after 100 iterations, most ants are at the locations that have balanced combinations of

Table 5. Different sets of sub-objective weights used in MACO-MLA optimization for
allocating land units in Panyu.

Option Suitability (a) Compactness (b) Cost (c)

A 1.00 0.00 0.00
B 0.75 0.25 0.00
C 0.50 0.50 0.00
D 0.25 0.75 0.00
E 0.50 0.25 0.25
F 0.25 0.25 0.50
G 0.25 0.50 0.25
H 0.34 .033 0.33
I 0.50 0.00 0.50
J 0.75 0.00 0.25
K 0.25 0.00 0.75
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Figure 4. The optimization process of land use pattern by using MACO-MLA model with the
defined weights in option H.
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Figure 5. Utility improvement with iterations by the proposed MACO-MLA model.

suitability, compactness, and conversion cost. The land use pattern started to stabilize after
150 iterations. A comparison of the land suitability map in Figure 3 and the last image in
Figure 4 shows that in the final result the land uses have been well allocated to their suitable
locations.

Figure 5 shows the change of the output value from the objective function as the itera-
tions progress (specified by option H). The curve shows that the value has a rapid increase
in the early stages of the optimization, gradually becomes stable, and finally levels out after
120 iterations. The search will spend about 25 minutes by using a computer with a Pentium
IV 3.2 GHz CPU.

Figure 6 shows the optimization results generated with different weight settings that
emphasize different objectives and their combinations. The letters that label the maps in
Figure 6 correspond to the options in Table 5. The pattern shown by option A in Figure 6
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14 X. Liu et al.

Figure 6. The optimal land use patterns of Panyu obtained by using MACO-MLA model with
various weighting scheme options.

is fragmented, because it considers only suitability without including compactness in the
objective function. From B to D, as the weight for compactness increases, the patterns
become increasingly compact as well, and a close inspection reveals that this is at the cost
of ignoring land use suitability (Table 6). Options E–H are the optimal patterns by con-
sidering the trade-off between suitability, compactness, and conversion cost. The land use
allocation procedure becomes more complicated by considering these conflicting objec-
tives. It is found that option H (a = 0.34, b = 0.33, and c = 0.33) can generate a satisfactory
pattern for land use planning according to the visual interpretation and comparison of the
trade-off (Table 5). The optimal solutions involving a weighted combination of suitabil-
ity and converting cost are illustrated in Options I–K. Note that in these solutions, with
not considering the compactness factor, the optimal pattern is fragmented (Table 6). As c
increases, the converting cost factor becomes more important, and the optimal solution
allocates land use where costs are lower. But the decrease of the converting cost is at the
cost of suitability (Table 6). Each option takes about 25 minutes for finding a near-optimal
solution using a computer with a Pentium IV 3.2 GHz CPU (Table 6).

A further experiment was carried out to compare the performances of this proposed
model with those of two conventional algorithms: the SA and the GA. These two algorithms
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Table 6. Total suitability, compactness, total cost, and computation time of MACO-MLA solutions
with different sets of weights in Table 4.

Option(a,b,c) Total suitability Compactness Total cost Run time (minutes)

A(1,0,0) 496, 190 0.87925 113, 812 25.3
B(0.75,0.25,0) 490, 472 0.88223 120, 702 24.8
C(0.5,0.5,0) 488, 428 0.93864 129, 511 24.3
D(0.25,0.75,0) 482, 046 0.94011 131, 188 25.5
E(0.5,0.25,0.25) 486, 229 0.90733 75, 451 24.2
F(0.25,0.25,0.5) 478, 653 0.91921 79, 649 25.2
G(0.25,0.5,0.25) 475, 816 0.89715 64, 557 23.9
H(0.34,0.33,0.33) 480, 547 0.90880 71, 361 24.6
I(0.5,0,0.5) 485, 520 0.84755 64, 300 25.5
J(0.75,0,0.25) 488, 205 0.82644 70, 619 24.7
K(0.25,0,0.75) 479, 500 0.81077 62, 321 25.8

have been proved to be useful techniques for solving land use allocation problems (Brookes
2001, Aerts and Heuvelink 2002, Malczewski 2004, Santé-Riveira et al. 2008). The SA
method and the GA method are applied to the same data set by using the defined weights in
option H so that the performances can be compared with that of the MACO-MLA model.
Figure 7 shows the optimal results of these three methods. Table 7 depicts the obtained
compactness, average suitability, and utility value of these three methods. As illustrated in
Figure 7 and Table 7, MACO-MLA yields the greatest utility value. This value is about
4.5% better than that of SA and about 1.3% better than that of GA. Furthermore, MACO-
MLA can generate more compact land use patterns; it has an improvement in compactness
over SA and GA methods by 8.9% and 1.7%, respectively. However, the average suitability
value of the MACO-MLA model is very close to that of SA and GA methods. Table 8
lists the computation time for these three methods in allocating land units using the same
computer. Both the SA method and the GA method need more much computation time than
the MACO-MLA model. The computation time of MACO-MLA amounts to only 2.6% and
12.3% of that of the SA and GA methods, respectively. This indicates that the performance
of MACO-MLA is encouraging in terms of its utility improvement and computation time.

4. Conclusion

The complexities of searching for an optimum land use solution will enormously increase
as the number of land uses to be allocated increases and/or the size of the data set increases.
Mathematical optimization approaches have difficulties in solving this problem within a
reasonable time. This article presents a study of applying the ACO algorithm, a recently
developed artificial intelligence approach, to the land use allocation problem. The most
important novelty of this study is that we expanded the conventional ACO to include mul-
tiple types of ants that represent different land uses and developed a corresponding spatial
exchange mechanism, which mimics the competition and interaction of different land uses,
through which optimization was achieved.

This modified ACO method was then applied to the creation of optimal land use pat-
terns in Panyu, a rapidly developing region. This large region consists of 1123 × 1295 cells.
The objective is to generate an optimal allocation pattern that both minimizes convert-
ing costs and maximizes land use suitability and compactness. This problem requires a
huge amount of computation time to solve by using the mathematical optimization method
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16 X. Liu et al.

Figure 7. Comparison of optimization results between MACO-MLA, SA, and GA.

Table 7. Compactness, average suitability, and utility for optimization results using MACO-MLA,
GA, and SA.

Modified ACO GA SA

Utility value 0.64030 0.63251 0.61279
Compactness 0.90880 0.89341 0.83479
Average suitability 0.92413 0.92165 0.91837

because the combinations are numerous. However, MACO-MLA took only about 25 min-
utes to find near-optimal solutions. The comparison between the MACO method, the SA
method, and the GA method indicates that MACO-MLA can yield a better performance
than SA and GA methods. It is found that MACO-MLA can improve the total utility value
over the SA method and the GA method by 4.5% and 1.3%, respectively. Furthermore,
MACO-MLA needs much less computation time than SA and GA methods, and the com-
putation time of MACO-MLA model only amounts to 2.6% and 12.3% of that of the SA
method and the GA method, respectively.
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Table 8. Comparison of the computation time using MACO, SA, and GA.

MACO SA GA MACO/SA MACO/GA

Time (minutes) 24.6 937.4 200.8 2.6% 12.3%

This study should be useful for tackling land use allocation problems involving large
amounts of spatial data by adapting and improving ACO-based algorithms. The MACO-
MLA method proved to be an efficient and effective optimization technique for generating
alternative land use patterns by altering sub-objective weights. It can be used to explore
the trade-off between maximizing land use suability, optimizing spatial objectives, and
minimizing converting cost. This can allow planners and stakeholders to test and compare
what can be gained under different sub-objective weights. It provides a useful exploratory
tool for testing various scenarios for land use planning. As such, the MACO-MLA method
may make sense to be incorporated as an early planning stage in practical land use planning.

Although the MACO-MLA model can be used to generate alternative land use pat-
terns, there are some limitations in using this model for land use allocation. First, only
three objectives have been included in the proposed model, namely, land use suitability,
conversion cost, and compactness. However, practical land use planning involves many
more factors, such as ecological protection, historical and cultural space protection, gov-
ernmental planning intention, and landscape aesthetics. Second, the MACO-MLA model
lacks a participatory module. Various stakeholders with conflicting interests are involved in
land development decision, and an allocation model is required to be participatory so that
all the stakeholders’ interests are taken into account. Finally, the MACO-MLA model also
lacks an interactive tool. A solution that includes all criteria is impossible. Thus, providing
an interactive tool is necessary to enable the stakeholders to experiment with criteria, visu-
ally explore alternatives, and learn about the problem as they search for feasible solutions
(Xiao et al. 2007). Future work will extend the capabilities of MACO-MLA for addressing
these limitations.
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